Percolation in Voronoi tilings

نویسندگان

  • Paul N. Balister
  • Béla Bollobás
  • Anthony Quas
چکیده

We consider a percolation process on a random tiling of R into Voronoi cells based on points of a realization of a Poisson process. We prove the existence of a phase transition as the proportion p of open cells is varied and provide relatively close upper and lower bounds for the critical probability pc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compactness of the Limit Set in First-passage Percolation on Voronoi Tilings

In this paper we consider first-passage percolation models on Voronoi tilings of the plane and present a sufficient condition for the compactness of the limit set. This result is based on a static renormalization technique and also provide an inequality involving critical probabilities for bond percolation models.

متن کامل

Greedy polyominoes and first-passage times on random Voronoi tilings∗

Let N be distributed as a Poisson random set on R, d ≥ 2, with intensity comparable to the Lebesgue measure. Consider the Voronoi tiling of R, {Cv}v∈N , where Cv is composed of points x ∈ R that are closer to v ∈ N than to any other v′ ∈ N . A polyomino P of size n is a connected union (in the usual R topological sense) of n tiles, and we denote by Πn the collection of all polyominos P of size ...

متن کامل

Percolation in the Hyperbolic Plane

Following is a study of percolation in the hyperbolic plane H and on regular tilings in the hyperbolic plane. The processes discussed include Bernoulli site and bond percolation on planar hyperbolic graphs, invariant dependent percolations on such graphs, and Poisson-Voronoi-Bernoulli percolation. We prove the existence of three distinct nonempty phases for the Bernoulli processes. In the first...

متن کامل

Bond percolation with attenuation in high dimensional Voronoi tilings

Let P be the set of points in a realization of a uniform Poisson process in Rn. The set P determines a Voronŏı tiling of Rn. Construct an infinite graph G with vertex set P and edges joining vertices when the corresponding Voronŏı cells share a (n − 1)dimensional boundary face. We consider bond percolation models on G obtained by declaring each edge xy of G open independently with probability p...

متن کامل

Bond percolation with attenuation in high dimensional Voronŏı tilings

Let P be the set of points in a realization of a uniform Poisson process in Rn. The set P determines a Voronŏı tiling of Rn. Construct an infinite graph G with vertex set P and edges joining vertices when the corresponding Voronŏı cells share a (n − 1)dimensional boundary face. We consider bond percolation models on G obtained by declaring each edge xy of G open independently with probability p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2005